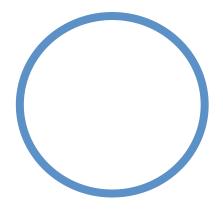
Finished Prokaryotic Genome Assemblies From a Low-cost Combination of Short and Long Reads

- An ALLPATHS-LG recipe

Shuangye Yin

FSAF, June 2012

Finished Prokaryotic Genome Assemblies From a Low-cost Combination of Short and Long Reads


- An ALLPATHS-LG recipe

Shuangye Yin

FSAF, June 2012

Limitations of draft genome assemblies

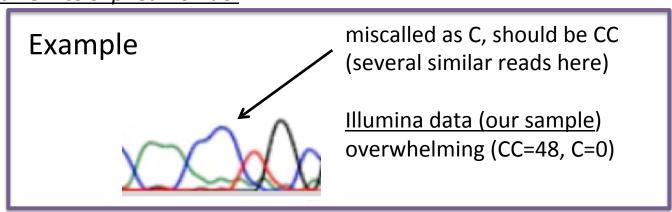
Perfect

good but drafty

Does it matter?

- 1. Mutations lost in errors
- 2. Gaps take out genes
- 3. Evolutionary hotspots missing

Manual finishing == \$\$\$


Finished ≠ perfect

Finished genomes	Reference Errors
(Manually finished using Sanger Chemistry)	
E. coli	~4
S. pneumoniae	~40
R. sphaeroides	~400

Align Illumina data to the reference, find discrepancies.

For each discrepancy we examined the **original** Sanger-chemistry traces

Deep dive into *S. pneumoniae*

Affordable perfection

Get close to perfect without breaking the bank

Strategy

- everything automated
- match the lab technologies to the problem

Laboratory "recipe" / strategy

Ingredients

50x

Illumina short pairs
100 base reads
from 180 bp fragments

50x

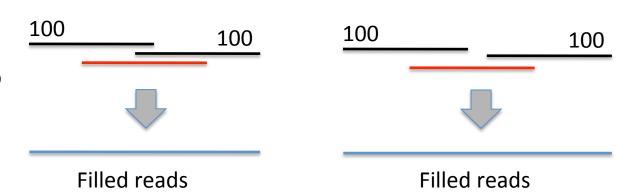
PacBio long reads 1000 base reads from 2-3 kb fragments

50x

Illumina wide jumps
100 base reads
from 2-10 kb fragments

Features

- resolve short-range repeats
- provide base accuracy
- resolve medium-range repeats
- compensate for bias

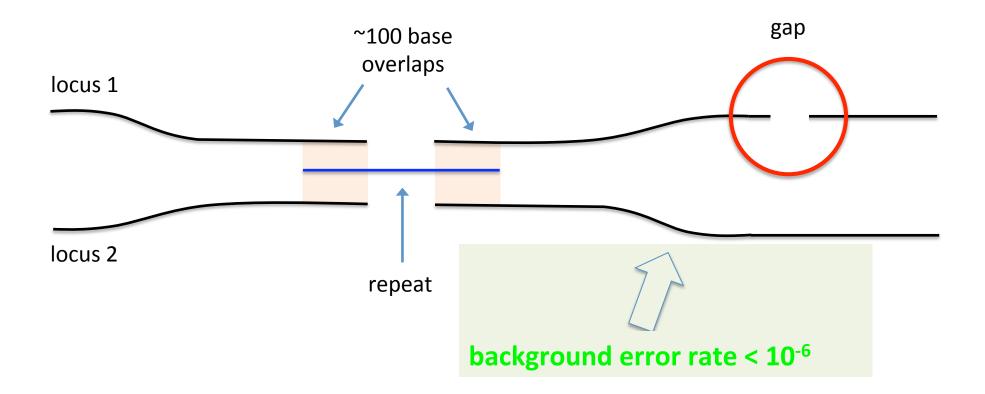

resolve long-range repeats

First form initial assembly

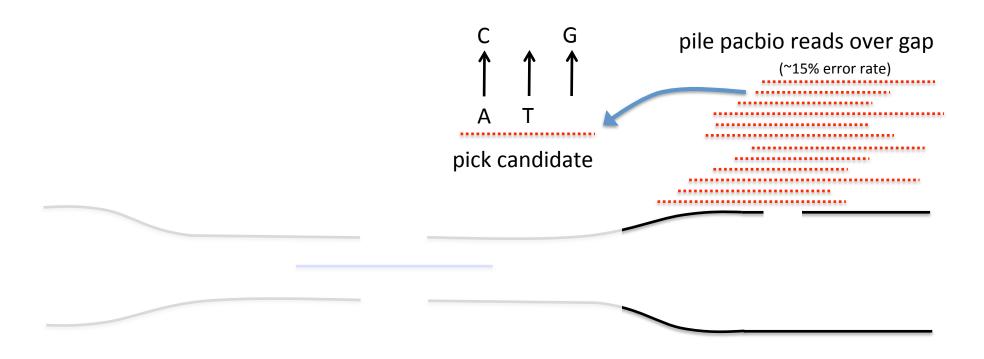
1. Close read pairs from 180 bp fragments

(3rd read – different pair)

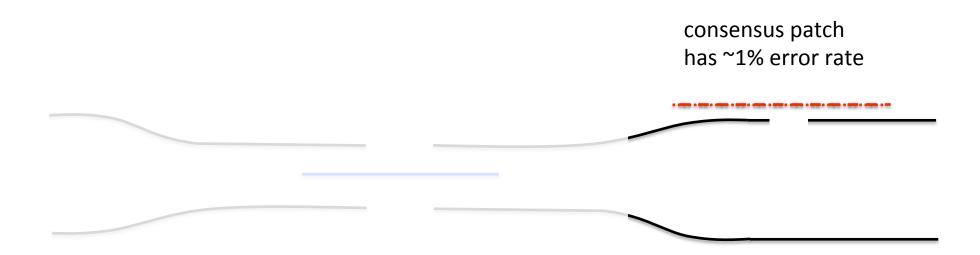
2. Glue along ~100 base overlaps (note 100 ≈ half of fragment size)

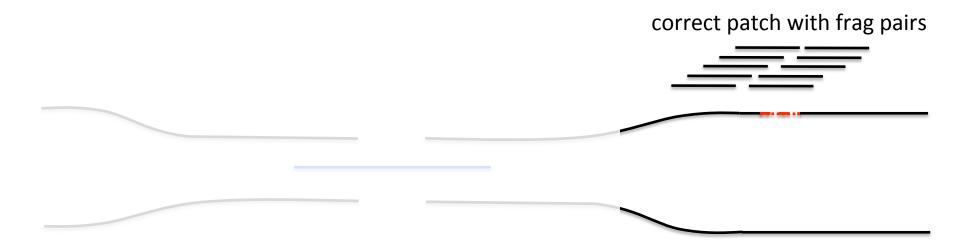


Preliminary assembly graph

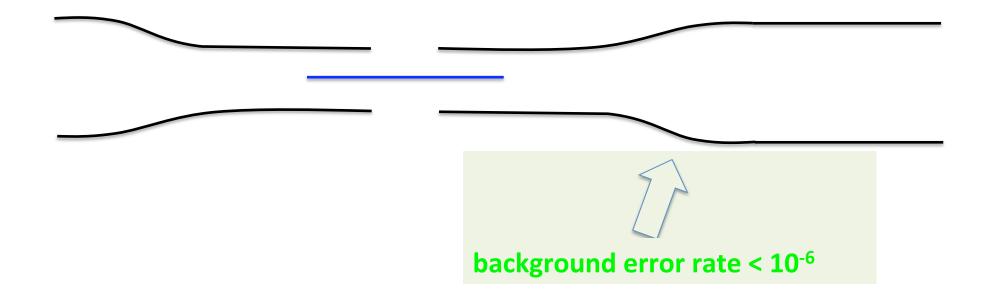

Get preliminary assembly graph

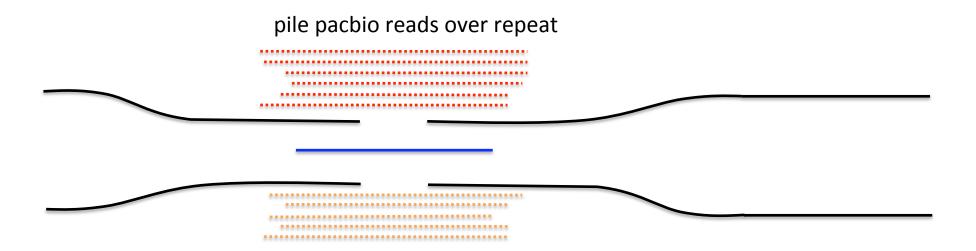
Challenges:


- Different loci joined along repeats
- Gaps from bias


Close graph gaps using long reads

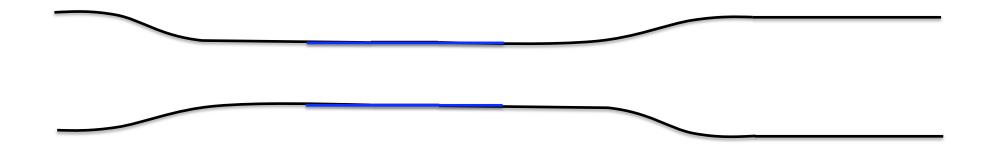
Patches have errors


Improve patch quality

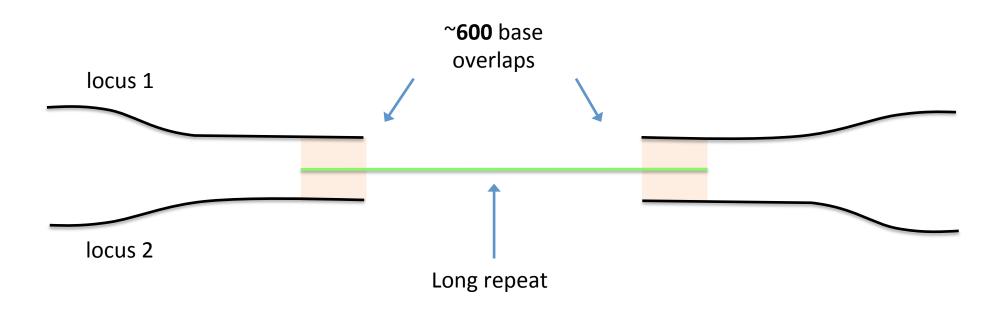

Patches now highly accurate

nearly all patches perfect

Gaps are gone!



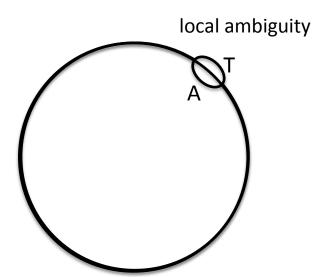
Now disambiguate repeats

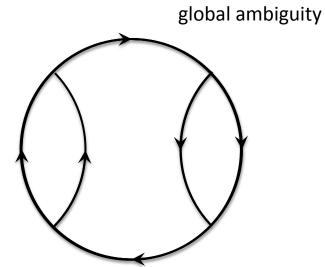

- Each pacbio read is expressed as a sequence in the graph
- Then we form the consensus of these sequences

Repeat is gone!

Same problem as before, at larger scale

ZOOM OUT!


Resolve using wide jumps



Long repeat is gone!

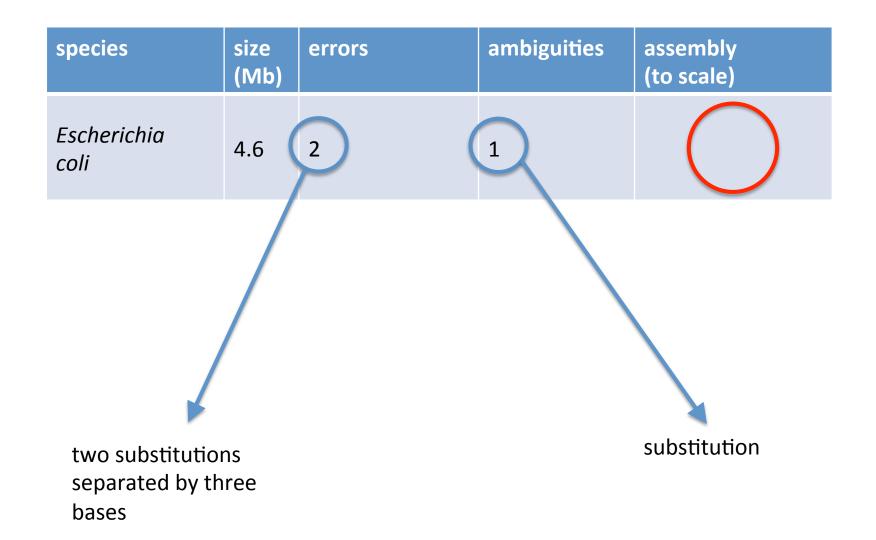
Assembly can still have ambiguities

FASTG: assembly format in progress

- by Assemblathon group
- very general
- looks like FASTA

Example:

..CCAT[alt|A,T]GCGT..


Data sets for assembly experiment

#	Species	Strain	Reference sequence
1	Escherichia coli	K12 MG1655	finished
2	Rhodobacter sphaeroides	2.4.1	finished
3	Streptococcus pneumoniae	Tigr4	finished
4	Bacteroides eggerthii	1_2_48FAA	
5	Bacteroides fragilis	CL05T00C42	
6	Bacteroides thetaiotaomicron	CL09T03C10	
7	Bifidobacterium bifidum	NCIMB 41171	
8	Coprobacillus sp.	D6	
9	Enterococcus casseliflavus	EC20	
10	Eubacterium sp.	3_1_31	
11	Fusobacterium nucleatum	OT 420	
12	Fusobacterium nucleatum	7_1	
13	Klebsiella oxytoca	10-5248	
14	Neisseria gonorrhoeae	FA19	
15	Neisseria gonorrhoeae	MS11	
16	Scardovia wiggsiae	F0424	

GC content from 27% to 69%.

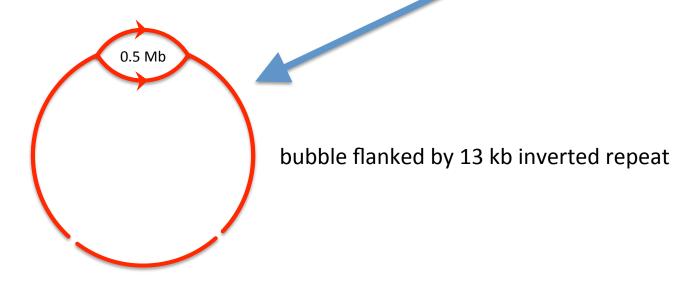
- data generated by same automated recipe.
- assemblies run with same parameters

ALLPATHS-LG assemblies of finished genomes

ALLPATHS-LG assemblies of finished genomes

	species	size (Mb)	errors	ambiguities	assembly (to scale)
	Escherichia coli	4.6	2	1	
	Rhodobacter spheroides	4.6	4	9	O o
-	olasmids intertwin 15 kb repeats	ed		\	

ALLPATHS-LG assemblies of finished genomes

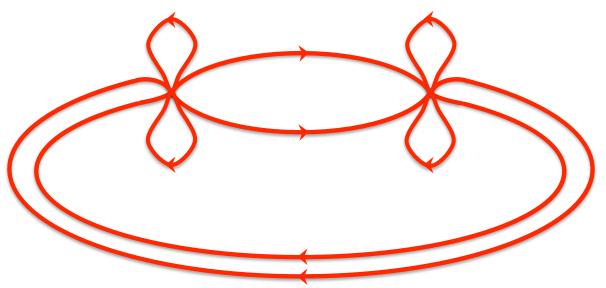

species	size (Mb)	errors		ambiguities	assembly (to scale)
Escherichia coli	4.6	2	~4	1	
Rhodobacter spheroides	4.6	4	~400	9	O · · · ·
Streptococcus pneumoniae	2.2	0	~40	6	0

Reference errors

The stats are better than we gave for finished sequences!

Other nearly complete assemblies

species	size (Mb)	ambiguities	assembly (to scale)
Bifidobacterium bifidum	2.2	4	
Scardoviawiggsiae	1.5	2	0
Enterococcus casseliflavus	3.4	0	
Eubacterium sp.	3.1	15	



Messier assemblies

Other assemblies: less well resolved

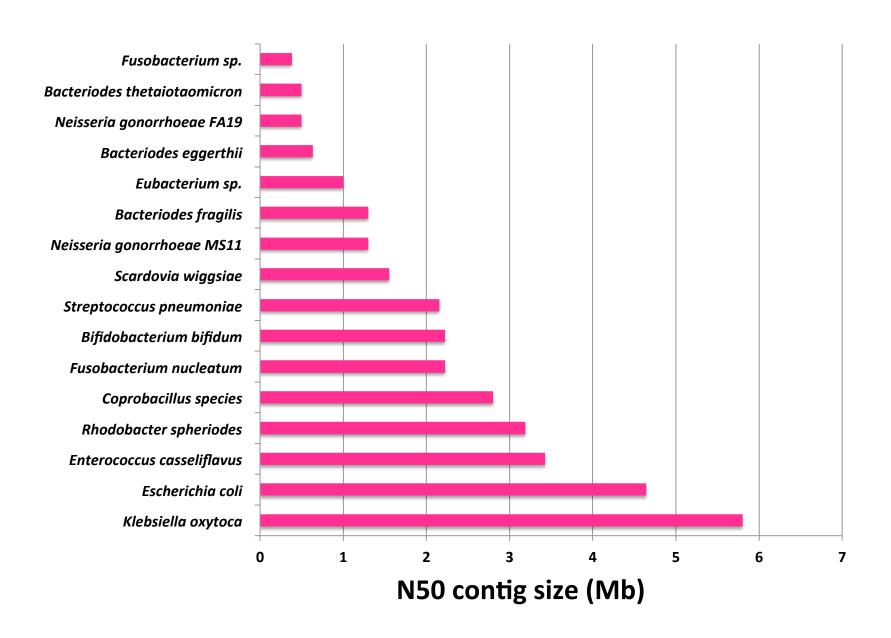
Some have several gaps and some are tangled

Bacterioides thetaiotaomicron (example)

What's happening: repeat occurs eight times, half in reverse orientation. Long enough that power may be lacking to pull it apart.

Why are some assemblies messier?

Likely causes:


- repeat sizes vary
- jump libraries vary

Average number of jumps covering a window of given size

sample	1k	2k	3k	4k	5k	6k
1	229	141	75	37	17	8
2	262	141	65	27	11	4
3	272	159	79	36	16	7
4	153	75	32	12	4	1.3
5	287	148	60	21	6	1.7
6	449	191	58	14	2	0.5
7	256	158	84	40	17	8
8	396	198	81	28	8	2
9	278	131	50	17	5	1.3
10	50	28	13	6	3	1.1
11	304	141	51	15	4	0.8
12	243	116	46	16	5	1.4
13	573	285	114	39	12	3
14	436	228	99	37	13	4
15	424	258	139	69	33	15
16	435	185	56	12	2	0.2

Tried manually increase the cover by 2.5 fold => Much better assembly.

Our contigs are really big

Near perfect assembly of bacterial genomes

- High quality genome, cost far lower
- Methods (lab + ALLPATHS-LG) available
- We're here to help

Acknowledgments

Broad Institute

Computational

David Jaffe

Iain MacCallum

Dariusz Przybylski

Filipe Ribeiro

Michael Ross

Ted Sharpe

Sante Gnerre

Terry Shea

Bruce Walker

Sarah Young

180 bp

Brian Hurhula

Chris Friedrich

Cole Walsh

Danielle Perrin

Sheila Fisher

PacBio

James Meldrim

Brian Sogoloff Patrick Cahill

Todd Sparrow

Lynne Aftuck

Carsten Russ

Nick Patterson

Rob Nicol

Chad Nusbaum

Jumps

Marc Chevrette

Purnima Kompella

Scott Steelman

Riza Daza

Funding NHGRI

NIAID

Many colleagues who contributed DNA samples

